Applications of Deep Learning Framework to

Accelerate the Solutions of Parabolic PDEs

Zhang Maoqi 3035534347
Mathematics

Research Colloquium for
Science UG Students 2021-22

Zhang Maoqi, Mathematics Supervised by Dr. Li Guanglian

will be discussed in the applications.

Abstract - This study aims at exploring the applications of the machine learning framework proposed by S. Mishra on parabolic PDEs.
The framework and corresponding algorithm aim at accelerating the solutions of time-dependent PDEs and ODEs. The method is based
on modeling the current numerical methods as an artificial framework with trainable parameters. By building up our loss function and
determining the parameters, the PDEs can be solved for particular points in the range of the function. As a continuation of the summer
research which mainly focused on ODEs, this report aims at applying the framework to parabolic PDEs and its variation. Basic heat

equations and its variation with non-constant coefficient are used as illustrative examples. The efficiency and limitations of the algorithms

Methodology — machine learning framework and generalized
difference method

- Explicit Scheme:

- Implicit Scheme:

Newton’s Iteration Method with
second order accuracy

(Implicit has more applications
for its stability, e.g. backward
Euler is unconditionally stable

while forward is not )

ML framework in next section

Algorithm 1: Machine Learning Framework PDE solver

Data: A PDE with known constant coefficients and unknown initial boundary
condition
Result: A model that can solve given PDEs with any boundary condition and
coefficients on the coarse grid

1 Choose a consistent (and stable) numerical method (alternatively neural network)
on the coarse grid. At the same time, embed parameters into the scheme. One has
the freedom to choose the number or dimensions of the parameters by choosing
schemes with different order and also different mesh size.

2 Generate initial data as training sets for the PDEs. (Usually, generate random
initial functions as training data. For example, generate Fourier series for Dirichlet
boundary condition.)

3 If the PDE is solvable, use exact solution as reference points on the coarse grid.
Otherwise, generate the reference points by using classic finite difference method
on fine grid and project on the coarse grids as reference points.

4 Set up loss function and use (stochastic) gradient descent method to find the locally
optimal parameter. The loss function is the sum of norms of errors of the results
calculated in The trained result of the parameter, denoted by 6*.
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5 Testing: generate a test set to test the accuracy of the model with trained
parameters. Calculate the error with respect to the reference points, compared the
error with the result of standard parameters (standard scheme like central scheme).
Assuming E(6*) > 0, define
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Examples and Experiments -
1. Ordinary Differential Equations
1.1 linear ODEs
ug + cFu(t) = 0,u(0) = ug

¢ [ g Eirain By | Gain |

1 [-0.0017 [ 01088 | 1.3001 | 140.33 | 107
10| -0.8285 | 1.0932 | 770.0160 | 1523.50 | 1.95
100 | 5.6346 | 3.517 | 522.1608 | 838.09 | 1.60

1.2 non-linear ODEs

gy = cu(l —u),u(0) = ug
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¢ | Iterations | g2%* FEiruin | Erp | Gain
0.2 131 0.4230 | 112.8 | 146.8 1.3

1 322 0.2310 707 13445 | 1.9
721 0.0320 | 2162.5 | 20760 | 9.6

2. Partial Differential Equations

2.1 Heat equation with constant coefficients

i|Vng"|b" |Db", | Scheme in time Scheme in space

1 0 0 1 | Backward Euler | second order accurate
2 0 —% ‘—31 Backward Euler | 4-th order accurate
3 % 0 1 Crank-Nicolson | second order accurate
4 3—, —% % Crank-Nicolson | 4-th order accurate

2.2 Heat equation with non-constant coefficients
Ou — Oy (c(x)0zu) =0

uli=o = uo(x) .

1
where ¢(z) = (1 + §sm( )) and € — +o0

c g5 | by | b’y | Gain; | Gainy
0.21055| 0 1 | 87.65 | 50.43
11045 0 | LO8| 237 | 2.29

10 | 0.06 | 2.4 | 5.6 | 5.29 5.64

Algorithm 2: Stochastic Gradient Descent (Standard Mini Batch)

Data: objective function »°7 | Q;(w), learning rate 5o
Result: w*

W 4 wo, 17 +"No, n <0

randomly pick m numbers in [1,n] as mini-batch M, calculate
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ieM ieM

check stopping criteria. (including steps, norm of changes)
if the algorithm continues, go back to 2 and repeat.
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Discussion -

The key contribution of this study is it clarifies the
computational process and potential challenges for constant-
coefficient heat equations. The framework highly increases
the accuracy of the coarse grid approximations within limited
steps for parabolic PDEs such as heat equations. Also, it
applied the proposed framework to the non-constant
coefficient PDEs, which is a long-standing open problem with
limited accuracy on the coarse grid approximation.




